Multi-objective optimization with fuzzy measures and its application to flow-shop scheduling
نویسندگان
چکیده
Most of the research in multi-objective scheduling optimization uses the classical weighted arithmetic mean operator to aggregate the various optimization criteria. However, there are scheduling problems where criteria are considered interact and thus a different operator should be adopted. This paper is devoted to the search of Pareto-optimal solutions in a tri-criterion flow-shop scheduling problem (FSSP) considering the interactions among the objectives. A new hybrid meta-heuristic is proposed to solve the problem which combines a genetic algorithm (GA) for solutions evolution and a reduced variable neighborhood search (RVNS) technique for fast solution improvement. To deal with the interactions among the three criteria the discrete Choquet integral method is adopted as a means to aggregate the criteria in the fitness function of each individual solution. Experimental comparisons (over public available FSSP test instances) with five existing multi-objective evolutionary algorithms (including the well known SPEA2 and NSGAII algorithms as well as the recently published L-NSGA algorithm) showed a superior performance for the developed approach in terms of diversity and domination of solutions. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Fuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects
In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...
متن کاملA Mathematical Model for a Flow Shop Scheduling Problem with Fuzzy Processing Times
This paper presents a mathematical model for a flow shop scheduling problem consisting of m machine and n jobs with fuzzy processing times that can be estimated as independent stochastic or fuzzy numbers. In the traditional flow shop scheduling problem, the typical objective is to minimize the makespan). However,, two significant criteria for each schedule in stochastic models are: expectable m...
متن کاملFuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm
Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملA fuzzy multi-objective linear programming approach for solving a new multi-objective job shop scheduling with sequence-dependent setup times
This paper presents a new mathematical model for a bi-objective job shop scheduling problem with sequence-dependent setup times that minimizes the weighted mean completion time and the weighted mean tardiness time. For solving this multi-objective model, we develop a fuzzy multi-objective linear programming (FMOLP) model. In this problem, a proposed FMOLP method is applied with respect to the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 25 شماره
صفحات -
تاریخ انتشار 2012